Postnatal development changes in excitatory synaptic activity in the rat locus coeruleus neurons

Arami, M.K. and Hajizadeh, S. and Semnanian, S. (2016) Postnatal development changes in excitatory synaptic activity in the rat locus coeruleus neurons. Brain Research, 1648. pp. 365-371.

Full text not available from this repository.
Official URL:


Glutamatergic synapses are shown to mature during activity and development. In order to further explore how glutamate can change the excitability of noradrenergic neurons of locus coeruleus (LC) and to better understand the involvement of Amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) and N-methyl-D-aspartate (NMDA) receptors complements across the LC, we investigated developmental changes in their activity during first postnatal weeks. Spontaneous and evoked excitatory postsynaptic currents (sEPSC and eEPSCs) were recorded in neurons of LC slices from 7, 14 and 21 days old rats using the whole cell patch clamp method. Also, the AMPA/NMDA current ratio (A/N) was measured. A pronounced AMPAR and NMDAR components mediated involvement in synaptic transmission were seen from the first postnatal week. Over this period of development, we have demonstrated that AMPA sEPSCs show an increase in frequency without major changes in their amplitude, while NMDA sEPSCs show an increase in frequency with a major change in amplitude. Neither the probability of release nor the AMPA/NMDA ratio was found to change significantly with age. It is concluded that NMDAR activity as well as AMPAR activity may be involved in coerulear excitability and modulatory effect during postnatal development. © 2016

Item Type: Article
Additional Information: cited By 0
Depositing User: eprints admin
Date Deposited: 08 Jul 2018 03:10
Last Modified: 08 Jul 2018 03:10

Actions (login required)

View Item View Item